

List of Equivalences	
$\mathrm{p} \vee(\mathrm{q} \wedge \mathrm{r}) \Leftrightarrow(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \vee \mathrm{r})$	Distribution Laws
$p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$	
$\begin{aligned} & \neg(p \vee q) \Leftrightarrow(\neg p \wedge \neg q) \\ & \neg(p \wedge q) \Leftrightarrow(\neg p \vee \neg q) \end{aligned}$	De Morgan's Laws
	Miscellaneous
$p \vee \neg p \Leftrightarrow \mathbf{T}$	Or Tautology
$p \wedge \neg p \Leftrightarrow F$	And Contradiction
$(\mathrm{p} \rightarrow \mathrm{q}) \Leftrightarrow(\neg \mathrm{p} \vee \mathrm{q})$	Implication Equivalence
$p \leftrightarrow q \Leftrightarrow(p \rightarrow q) \wedge(q \rightarrow p)$	Biconditional Equivalence

Prove: $(p \wedge \neg q) \vee q \Leftrightarrow p \vee q$
$(p \wedge \neg q) \vee q \quad$ Left-Hand Statement
$\Leftrightarrow q \vee(p \wedge \neg q) \quad$ Commutative
$\Leftrightarrow(q \vee p) \wedge(q \vee \neg q)$ Distributive
$\Leftrightarrow(q \vee p) \wedge T \quad$ Or Tautology
$\Leftrightarrow q \vee p \quad$ Identity
$\Leftrightarrow p \vee q \quad$ Commutative
Begin with exactly the left-hand side statement
End with exactly what is on the right
Justify EVERY step with a logical equivalence

List of Logical Equivalences

$p \wedge T \Leftrightarrow p ;$	$p \vee F \Leftrightarrow p$
$p \vee T \Leftrightarrow T ;$	$p \wedge F \Leftrightarrow F$
$p \vee p \Leftrightarrow p ;$	Identity Laws
$\neg(\neg p) \Leftrightarrow p$	Domination Laws
$p \vee p$	Idempotent Laws
$p \vee q \Leftrightarrow q \vee p ; p \wedge q \Leftrightarrow q \wedge p$	Double Negation Law
$(p \vee q) \vee r \Leftrightarrow p \vee(q \vee r) ;(p \wedge q) \wedge r \Leftrightarrow$	Commutative Laws
	Associative Laws

Associative Laws

The Proof Process

Predicate Calculus: Quantifiers

Universe of Discourse, U: The domain of a variable in a propositional function.

Universal Quantification of $\mathrm{P}(\mathrm{x})$ is the proposition:" $\mathrm{P}(\mathrm{x})$ is true for all values of x in U ."

Existential Quantification of $\mathrm{P}(\mathrm{x})$ is the proposition:
"There exists an element, x, in U such that $P(x)$ is true."

Universal Quantification of $\mathrm{P}(\mathrm{x})$

$\forall x P(x)$
"for all x P(x)"
"for every x P(x)"
Defined as:
$P\left(x_{0}\right) \wedge P\left(x_{1}\right) \wedge P\left(x_{2}\right) \wedge P\left(x_{3}\right) \wedge \ldots$ for all x_{i} in U
Example:
Let P (x) denote $\mathrm{x}^{2} \geq \mathrm{x}$
If U is x such that $0<x<1$ then $\forall x P(x)$ is false.
If U is x such that $1<x$ then $\forall x P(x)$ is true.

Existential Quantification of

 $P(x)$$\exists \mathrm{xP}(\mathrm{x})$
"there is an x such that $\mathrm{P}(\mathrm{x})$ "
"there is at least one x such that $\mathrm{P}(\mathrm{x})$ "
"there exists at least one x such that $\mathrm{P}(\mathrm{x})$ "
Defined as:
$\mathrm{P}\left(\mathrm{x}_{0}\right) \vee \mathrm{P}\left(\mathrm{x}_{1}\right) \vee \mathrm{P}\left(\mathrm{x}_{2}\right) \vee \mathrm{P}\left(\mathrm{x}_{3}\right) \vee \ldots$ for all x_{i} in U
Example:
Let $\mathrm{P}(\mathrm{x})$ denote $\mathrm{x}^{2} \geq \mathrm{x}$
If U is x such that $0<x \leq 1$ then $\exists x P(x)$ is true. If U is x such that $x<1$ then $\exists x P(x)$ is true.

Quantifiers

$\forall x P(x)$
-True when $\mathrm{P}(\mathrm{x})$ is true for every x .
-False if there is an x for which $P(x)$ is false.
$\exists x P(x)$
-True if there exists an x for which $P(x)$ is true.
-False if $\mathrm{P}(\mathrm{x})$ is false for every x .

Negation (it is not the case)
$\neg \exists \mathrm{xP}(\mathrm{x})$ equivalent to $\forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
-True when $\mathrm{P}(\mathrm{x})$ is false for every x
\cdot False if there is an x for which $P(x)$ is true.
$\neg \forall \mathrm{xP}(\mathrm{x})$ is equivalent to $\exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
-True if there exists an x for which $P(x)$ is false.
-False if $\mathrm{P}(\mathrm{x})$ is true for every x .

Examples 2a

Let $\mathrm{T}(\mathrm{a}, \mathrm{b})$ denote the propositional function "a trusts b." Let U be the set of all people in the world.

Everybody trusts Bob.
$\forall x T(x, B o b)$
Could also say: $\forall \mathrm{x} \in \mathrm{U} \mathrm{T}(\mathrm{x}, \mathrm{Bob})$
\in denotes membership
Bob trusts somebody.
$\exists x \mathrm{~T}(\mathrm{Bob}, \mathrm{x})$

Examples 2b

Alice trusts herself.
T(Alice, Alice)
Alice trusts nobody.
$\forall \mathrm{x} \neg \mathrm{T}$ (Alice, x)
Carol trusts everyone trusted by David.
$\forall x(T($ David,x) \rightarrow T(Carol,x) $)$

Everyone trusts somebody.
$\forall x \exists y \mathrm{~T}(\mathrm{x}, \mathrm{y})$

Quantification of Two Variables (read left to right)

$\forall \mathrm{x} \forall \mathrm{yP}(\mathrm{x}, \mathrm{y})$ or $\forall \mathrm{y} \forall \mathrm{xP}(\mathrm{x}, \mathrm{y})$
-True when $P(x, y)$ is true for every pair x, y.
\bullet False if there is a pair x, y for which $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is false.
$\exists x \exists y P(x, y) \quad$ or $\exists y \exists x P(x, y)$
True if there is a pair x, y for which $P(x, y)$ is true.
False if $P(x, y)$ is false for every pair x, y

Quantification of Two Variables

$\forall x \exists y P(x, y)$
-True when for every x there is a y for which $P(x, y)$ is true (in this case y can depend on x)
-False if there is an x such that $P(x, y)$ is false for every y
$\exists y \forall x P(x, y)$
-True if there is a y for which $P(x, y)$ is true for every x. (i.e., true for a particular y regardless (or independent) of x)
-False if for every y there is an x for which $P(x, y)$ is false.
Note that order matters here
In particular, if $\exists y \forall x P(x, y)$ is true, then $\forall x \exists y P(x, y)$ is true. However, if $\forall x \exists y P(x, y)$ is true, it is not necessary that $\exists y \forall x P(x, y)$ is true.

Examples 3a

Let $L(x, y)$ be the statement " x loves y " where U for both x and y is the set of all people in the world.

Everybody loves Jerry.
$\forall x L(x, J e r r y)$

Everybody loves somebody.
$\forall x \exists y L(x, y)$

There is somebody whom everybody loves.
$\exists y \forall x L(x, y)$

Examples 3b1

There is somebody whom Lydia does not love.
$\exists \mathrm{x} \neg \mathrm{L}(\mathrm{Lydia}, \mathrm{x})$
Nobody loves everybody. (For each person there is at least one person they do not love.)
$\forall \mathrm{x} \exists \mathrm{y} \neg \mathrm{L}(\mathrm{x}, \mathrm{y})$
There is somebody (one or more) whom nobody loves $\exists \mathrm{y} \forall \mathrm{x} \neg \mathrm{L}(\mathrm{x}, \mathrm{y})$

